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ABSTRACT: With the aid of a chiral nickel catalyst,
enantioselective - (and 0-) alkylations of carbonyl com-
pounds can be achieved through the coupling of y-halo-
amides with alkylboranes. In addition to primary alkyl
nucleophiles, for the first time for an asymmetric cross-
coupling of an unactivated alkyl electrophile, an arylmetal, a
boronate ester, and a secondary (cyclopropyl) alkylmetal
compound are shown to couple with significant enantio-
selectivity. A mechanistic study indicates that cleavage of the
carbon—halogen bond of the electrophile is irreversible
under the conditions for asymmetric carbon—carbon bond
formation.

In comparison with a- and $-alkylation reactions,' the range of
useful methods for the catalytic enantioselective incorporation
of alkyl substituents y to a carbonyl group is rather limited.” One
unexplored approach to this objective is the asymmetric couplin§ of
a y-halocarbonyl compound with an alkylmetal reagent (eq 1).”*
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To date, effective enantioselective cross-couplings of unacti-
vated alkyl electrophiles have been described only for secondary
homobenzylic bromides, acylated halohydrins (and one homo-
logue), and f3-haloanilines; in each instance, a primary alkylmetal
reagent has served as the nucleophilic coupling partner.® In this
report, we establish that a chiral nickel catalyst can achieve stereo-
convergent alkylation reactions of y-halocarbonyl compounds
(eq 2), and we provide the first example of an asymmetric cross-
coupling of an unactivated alkyl electrophile with a secondary
(cyclopropyl) alkylmetal reagent.
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In early studies, we determined that, when the carbonyl
group is an N,N-diphenylamide, good ee’s and yields can be
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obtained for a range of alkyl—alkyl Suzuki cross-couplings
(Table 1).° Diphenylamides are attractive carboxylic acid
derivatives, since reduction and acyl transfer reactions proceed
smoothly (eqs 3—57).
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Asillustrated in Table 1, asymmetric y-alkylations of a range of
unactivated racemic secondary -chloroamides can be achieved
with an array of alkylboranes, furnishing the alkyl—alkyl Suzuki
coupling products with good enantioselectivity. A wide variety of
functional groups are compatible with the reaction conditions,
including an acetal, silyl ether, aryl ether,® indole, and aryl
fluoride.” Both of the catalyst components (NiBr, - diglyme and
ligand 1) are commercially available.

With respect to the electrophile, the scope of these asym-
metric alkylations is not limited to cross-couplings of y-chloro-
diphenylamides. Thus, the corresponding bromides are also
suitable electrophiles (eq 6; not optimized). Furthermore, under
the standard conditions, good ee was observed for the stereo-
convergent coupling of a homologue of a y-chloroamide, thereby
achieving enantioselective O-alkylation (eq 7).'* Finally, the
carbonyl group need not be a diphenylamide;'" for example,
the cross-coupling of a y-chloro Weinreb amide'* proceeded
with promising ee, and a preliminary study provided evidence
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Table 1. Catalytic Enantioselective y-Alkylation of N,
N-Diphenylamides via Stereoconvergent Suzuki Cross-
Couplings of Secondary Alkyl Chlorides”

entry R! R ee (%) yield (%)?
o_0
1 Me e~ ve 85 63
2 e /‘LL\O o s
3 Et (CHy)s—OTBS 91 74
4 Et \/\©\ 89 80
-~
5 Et (CHy)7N 90 63
69 Et (CHL)s—CN 69 51
7 nBu \/\©\ 90 64
8 CH,CHaPh \/\©\ 88 83
Me
9 Bu (CHz)s~Ph 82 61

“For the reactlon conditions, see eq 2. All data are averages of
two experiments. Ylelds of purified products. “20% NiBr, - diglyme
and 24% 1 were used. ¢ The reaction was conducted in i-Pr,O at
60 °C.

that enhanced enantioselectivity should be possible through fur-
ther optimization (eq 8).

Alky! bromide:
0 see eq 2 o
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with 25% Kl: 86% ee, 75% yield

With respect to the nucleophilic coupling partner, previous
studies of asymmetric cross-couplings of unactivated secondary
electrophlles have focused exclusively on primary alkyl-(9-BBN)
derivatives.’ We obtained encouraging enantioselectivities when
a 7y-chloroamide was coupled with an arylborane (eq 9), a
boronate ester (eq 10), or a secondary (cyclopropyl) alkylborane
(eq 11)."* These data illustrate the potential for an important

Scheme 1. Outline of a Possible Reaction Pathway”
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“For the sake of simplicity, all of the elementary steps are drawn as
irreversible.

expansion in the scope of asymmetric cross-couplings of unac-
tivated alkyl electrophiles.

Aryl nucleophile:
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Our current working hypothesis regarding the pathway for
these Suzuki reactions is depicted in Scheme 1. This builds on
pioneering mechanistic studies of nickel/terpyridine-catalyzed
Negishi cross- couphngs of unactivated alkyl halides by Vicic'*
and Phillips."*® Interestingly, the computational investigation by
Phillips suggests that the formation of B may be rever51ble for the
coupling of MeZnl and i-Pr], specifically, that AG* = 11 keal /mol
for B— A and AG* = 13 kcal/mol for B— C.

To gain insight into whether the initial step of oxidative
addition (A — B) is reversible under our Suzuki cross-coupling
conditions, we monitored the reaction of each enantiomer of a
y-haloamide and observed essentially no erosion in the ee of the
electrophile during the course of the reaction (eq 12). This is
consistent with the conclusion that halide abstraction (A — B) is
irreversible, in contrast to the results of Phillips' study of a Negishi
reaction,'>'¢

O see eq 2 o
Ph\N)J\/\(Et (9-BBN)—R Ph\N)K/\rEt (12)
b cl R=(CHp)sOTBS  pp, R

Experiment 1: >99% ee (S) At partial conversion (10-81%),
Experiment 2: >99% ee (R) electrophile ee: >99%

In conclusion, we have developed a method for the catalytic
enantioselective - (and 0-) alkylation of carbonyl compounds
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through the cross-coupling of y-haloamides with alkylboranes.
With regard to the family of products that is generated, this study
differs from previous reports of asymmetric couplings of unac-
tivated secondary alkyl electrophiles, which furnished substituted
benzenes, protected alcohols, and anilines. Both alkyl chlorides
and alkyl bromides are suitable electrophilic cross-coupling
partners, and for the first time an arylmetal, a boronate ester,
and a secondary (cyclopropyl) alkylmetal compound are shown
to serve as nucleophilic partners and to couple with substantial
enantioselectivity. A mechanistic study indicates that carbon—
halogen bond cleavage is irreversible under the reaction condi-
tions. Further investigations of cross-couplings of alkyl electro-
philes are underway.
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