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ABSTRACT: With the aid of a chiral nickel catalyst,
enantioselective γ- (and δ-) alkylations of carbonyl com-
pounds can be achieved through the coupling of γ-halo-
amides with alkylboranes. In addition to primary alkyl
nucleophiles, for the first time for an asymmetric cross-
coupling of an unactivated alkyl electrophile, an arylmetal, a
boronate ester, and a secondary (cyclopropyl) alkylmetal
compound are shown to couple with significant enantio-
selectivity. Amechanistic study indicates that cleavage of the
carbon�halogen bond of the electrophile is irreversible
under the conditions for asymmetric carbon�carbon bond
formation.

In comparison with α- and β-alkylation reactions,
1 the range of

useful methods for the catalytic enantioselective incorporation
of alkyl substituents γ to a carbonyl group is rather limited.2 One
unexplored approach to this objective is the asymmetric coupling of
a γ-halocarbonyl compound with an alkylmetal reagent (eq 1).3,4

To date, effective enantioselective cross-couplings of unacti-
vated alkyl electrophiles have been described only for secondary
homobenzylic bromides, acylated halohydrins (and one homo-
logue), and β-haloanilines; in each instance, a primary alkylmetal
reagent has served as the nucleophilic coupling partner.5 In this
report, we establish that a chiral nickel catalyst can achieve stereo-
convergent alkylation reactions of γ-halocarbonyl compounds
(eq 2), and we provide the first example of an asymmetric cross-
coupling of an unactivated alkyl electrophile with a secondary
(cyclopropyl) alkylmetal reagent.

In early studies, we determined that, when the carbonyl
group is an N,N-diphenylamide, good ee’s and yields can be

obtained for a range of alkyl�alkyl Suzuki cross-couplings
(Table 1).6 Diphenylamides are attractive carboxylic acid
derivatives, since reduction and acyl transfer reactions proceed
smoothly (eqs 3�57).

As illustrated in Table 1, asymmetric γ-alkylations of a range of
unactivated racemic secondary γ-chloroamides can be achieved
with an array of alkylboranes, furnishing the alkyl�alkyl Suzuki
coupling products with good enantioselectivity. A wide variety of
functional groups are compatible with the reaction conditions,
including an acetal, silyl ether, aryl ether,8 indole, and aryl
fluoride.9 Both of the catalyst components (NiBr2 3 diglyme and
ligand 1) are commercially available.

With respect to the electrophile, the scope of these asym-
metric alkylations is not limited to cross-couplings of γ-chloro-
diphenylamides. Thus, the corresponding bromides are also
suitable electrophiles (eq 6; not optimized). Furthermore, under
the standard conditions, good ee was observed for the stereo-
convergent coupling of a homologue of a γ-chloroamide, thereby
achieving enantioselective δ-alkylation (eq 7).10 Finally, the
carbonyl group need not be a diphenylamide;11 for example,
the cross-coupling of a γ-chloro Weinreb amide12 proceeded
with promising ee, and a preliminary study provided evidence
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that enhanced enantioselectivity should be possible through fur-
ther optimization (eq 8).

With respect to the nucleophilic coupling partner, previous
studies of asymmetric cross-couplings of unactivated secondary
electrophiles have focused exclusively on primary alkyl-(9-BBN)
derivatives.5 We obtained encouraging enantioselectivities when
a γ-chloroamide was coupled with an arylborane (eq 9), a
boronate ester (eq 10), or a secondary (cyclopropyl) alkylborane
(eq 11).13 These data illustrate the potential for an important

expansion in the scope of asymmetric cross-couplings of unac-
tivated alkyl electrophiles.

Our current working hypothesis regarding the pathway for
these Suzuki reactions is depicted in Scheme 1. This builds on
pioneering mechanistic studies of nickel/terpyridine-catalyzed
Negishi cross-couplings of unactivated alkyl halides by Vicic14a

and Phillips.14b Interestingly, the computational investigation by
Phillips suggests that the formation of Bmay be reversible for the
coupling ofMeZnI and i-PrI, specifically, thatΔGq = 11 kcal/mol
for B f A and ΔGq = 13 kcal/mol for B f C.

To gain insight into whether the initial step of oxidative
addition (A f B) is reversible under our Suzuki cross-coupling
conditions, we monitored the reaction of each enantiomer of a
γ-haloamide and observed essentially no erosion in the ee of the
electrophile during the course of the reaction (eq 12). This is
consistent with the conclusion that halide abstraction (Af B) is
irreversible, in contrast to the results of Phillips' study of a Negishi
reaction.15,16

In conclusion, we have developed a method for the catalytic
enantioselective γ- (and δ-) alkylation of carbonyl compounds

Table 1. Catalytic Enantioselective γ-Alkylation of N,
N-Diphenylamides via Stereoconvergent Suzuki Cross-
Couplings of Secondary Alkyl Chloridesa

a For the reaction conditions, see eq 2. All data are averages of
two experiments. b Yields of purified products. c 20% NiBr2 3 diglyme
and 24% 1 were used. d The reaction was conducted in i-Pr2O at
60 �C.

Scheme 1. Outline of a Possible Reaction Pathwaya

a For the sake of simplicity, all of the elementary steps are drawn as
irreversible.
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through the cross-coupling of γ-haloamides with alkylboranes.
With regard to the family of products that is generated, this study
differs from previous reports of asymmetric couplings of unac-
tivated secondary alkyl electrophiles, which furnished substituted
benzenes, protected alcohols, and anilines. Both alkyl chlorides
and alkyl bromides are suitable electrophilic cross-coupling
partners, and for the first time an arylmetal, a boronate ester,
and a secondary (cyclopropyl) alkylmetal compound are shown
to serve as nucleophilic partners and to couple with substantial
enantioselectivity. A mechanistic study indicates that carbon�
halogen bond cleavage is irreversible under the reaction condi-
tions. Further investigations of cross-couplings of alkyl electro-
philes are underway.
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